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The Elimination of Fast Variables 
in Complex Chemical Reactions. 
II. Mesoscopic Level (Reducible Case) 
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The master equation for chemical reactions that proceed through a number 
of steps (complex reactions) is considered. Examples are studied in which the 
reaction constant of one of the steps is much larger than the others, and a 
reduced master equation is derived by means of a projection operator 
formalism. This reduction amounts to an elimination of intermediates. The 
consistency of the scheme is shown by means of the Q-expansion. 

KEY WORDS:  Complex chemical reactions; intrinsic fluctuations; master 
equation; elimination of fast variables; Q-expansion. 

1. I N T R O D U C T I O N  

The kinetics of chemical reactions may be studied at two different levels. 
At the macroscopic level one is interested in the variation in time of 

the concentrations of reactants. The concentrations obey certain rate 
equations, which follow from the reaction mechanism. In order to get 
insight into the kinetics of the reaction one has to solve the rate equations 
(this can only be done in special cases; see, e.g., refs. 14 and 15) or reduce 
their number. This latter approach is appropriate  if one or more reaction 
steps proceeds much faster than the others. The fast stages of the reaction 
can then be eliminated, and one is left with rate equations that describe 
only the slow processes (see part  I of this work~ 

The description of a chemical reaction in terms of rate equations is 
valid if one may consider the chemical substances to be continuously and 
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homogeneously distributed in space. The latter condition can be met to any 
degree of accuracy if the chemical mixture is stirred sufficiently well. The 
discrete nature of matter, however, implies that the former condition can 
only be satisfied approximately. 

At the mesoscopic level the fact that chemical substances consist of 
individual molecules is taken into account. The kinetics is described in 
terms of the numbers of molecules ni (i = 1,..., N) of the various chemicals 
involved. It is assumed that the ni constitute a Markov process, the evolu- 
tion of which is governed by a master equation. The transition probability 
is determined by the number of collisions per unit time, which follows from 
a stosszahlansatz. The resulting fluctuations in the numbers nt are called 
intrinsic fluctuations. Basic papers on this kind of fluctuation are, e.g., refs. 
1 and 2. Also see ref. 3. 

Apart from the intrinsic fluctuations, a chemical reaction may also be 
subjected to external noise. Fluctuations that are introduced by the sur- 
roundings are, e.g., the nonconstancy of temperature and pressure in the 
reaction vessel. The effects of external fluctuations have been investigated 
for the case of explosive reactions. (4's~ In this paper and the following I will 
deal exclusively with intrinsic fluctuations. 

Although intrinsic fluctuations are generally of the order of the square 
root of the number of particles and therefore relatively small, they still 
can have a marked effect, as in bistable chemical reactions, (7) reaction- 
diffusion systems, (8~ two-species annihilation, (9) and explosive chemical 
reactions. (6,16) 

The master equation can be solved exactly if all reaction steps are 
unimolecular, in which case the transition probabilities depend linearly 
on the ni .(3~ For bimolecular reaction steps (corresponding to nonlinear 
transition probabilities) no general solution exists, and one has to resort to 
approximation methods. 

A particular powerful approximation scheme for the master equation 
is the 12-expansion. (3~ 12 is a parameter that measures the size of the system, 
and it is assumed to be very large. For  chemical reactions one usually iden- 
tifies 12 with the volume of the reaction vessel. 3 The 12-expansion is based 
on the insight that fluctuations are of order 121/2; the numbers ni are 
decomposed into a deterministic and a fluctuating part, n~ = 12~o~ + 12~/2~g, 
and the master equation is expanded in powers of 12 1/2. The order-121/2 
terms yield deterministic equations for the quantities q~g, which are identi- 
cal to the macroscopic rate equations. The order-12 ~ terms produce a linear 
Fokker-Planck equation for the probability density of the fluctuating 

3 This is the conventional choice. Recently Burschka (8~ introduced a refined version of the 
~-expansion in which f2 is identified with Avogadro's number. 
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quantities ~i- The coefficients in this equation depend on time through 
the (oi. 

An important consequence of the Q-expansion is that the fluctuations 
~i vary on the same time scales as the macroscopic quantities q)i. Hence the 
Q-expansion effectively wipes out all mesoscopic time scales. 

Consider now the situation that at the macroscopic level there are a 
fast and a slow time scale. One may think of a reaction in which X is con- 
verted into Z in two steps: first X initiates an intermediate Y, which is sub- 
sequently consumed in a fast second reaction to produce Z. At the level of 
rate equations one may eliminate Y, which is a short-lived intermediate, 
and derive an equation describing the slow formation of Z. If, at the 
mesoscopic level, one considers the master equation and performs the 
Q-expansion, it turns out that the fluctuations in Y are also rapidly 
varying. Hence, the fluctuations in Y may be eliminated as well. One ends 
up with a reduced description that encompasses the rate of conversion of 
X into Z and fluctuations in it. 

In this paper, I will study the effects on the overall reaction of intrinsic 
fluctuations in short-lived intermediates. The above scenario in which one 
first takes the limit Q-+ oe and subsequently e--* 0 (e is a measure of the 
lifetime of the intermediate) is straightforward, but very cumbersome. 

Therefore I will adopt a different strategy and take the limit e-~ 0 
immediately (Q is kept fixed). A projection operator technique is used to 
perform the elimination of intermediates. This wilt be illustrated with two 
examples. For  both cases a reduced master equation describing the overall 
reaction will be obtained. 

2. DERIVATION OF A REDUCED MASTER EQUATION 

Consider the autocatalytic part of the Schl6gl reaction(m): 

A + 2X~- 3X (1) 

Only X varies; the amount of substance A is held constant during the 
reaction. 

As (1) involves three-particle interactions, which are highly 
unprobable, it is expected to be a complex reaction. A plausible reaction 
mechanism, involving the intermediate Y, is provided by the following two 
simple reactions(U): 

k2 k 4 
2 X ,  ' Y, A + Y~ ' X +  Y (2) 

kl k3 

Y is supposed to be a short-lived intermediate. This amounts to the 
assumption that the reaction step Y-~ 2X proceeds much faster than the 
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other ones. Therefore we put k2 = l/e, e ~ 1. First the intermediate Y is 
eliminated at the macroscopic and subsequently at the mesoscopic level. 

The rate equations associated with (2) read 

2 
2 = - y  - 2 k l x  2 + k3ay - k4xy  

e 

1 
~= - - y q - k l  x2 

(3) 

! have denoted the concentrations of A, X, and Y by a, x, and y respec- 
tively. If one performs the scaling y =ez, Eq. (3) are transformed into the 
standard form, (13) 

2 = 2z - 2kl x2 + ek3az - ek4xz 

1 
-7 = -  ( k l  x 2 -  z )  

(4) 

The fast variable z can now be eliminated straightforwardly. This yields the 
reduced equation 

2 = eaklk3 x 2 -  eklk4 x3 + O(e 2) (5) 

The order-e 2 corrections in (5) contain a term proportional to x4; this is a 
manifestation of the complexity of the reaction. 

Let us next consider (2) mesoscopically. The master equation 
associated with (2) reads 

P(nl, n2) k l  ~Q- I  2 1 = (E1E 2 - 1 ) n ~ ( n ~ - l ) p + l ( E ; - 2 E 2 - 1 ) n 2 p  
e 

+ k 3 a ( E ~  1 -  1 ) n 2 p + k 4 ( 2  I(E 1 - 1 ) n l n z p  (6) 

The number of molecules of X and Y are denoted by nl and n 2, respec- 
tively. The symbol Ei is a step operator: El f (n1 ,  n 2 ) = f ( n l  + 1, n2). (2 is 
the volume of the vessel in which the reaction takes place. 

Equation (6) is a linear evolution equation in which the evolution 
operator consists of a large part and a remaining one. Its formal structure 
is given by 

1 
[~= Lp, L = -  L1 + L2 (7) 

The operators L 1 and L 2 refer to fast and slow processes, respectively. 
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From (7) a reduced equation, which only contains the slow processes, 
can be derived if one can find a projection operator P satisfying P L  1 = 
L I P = O  and subject to the condition that L1 is invertible in its null 
space. (12'13) The reduced equation describes the evolution of the projected 
part of p, 

P p =  L~edP p (8) 

The reduced evolution operator Lre d is a series in e; its first two terms are 
given by (12' 13) 

Lred = PL2 P -- ~PL2 QL ~- 1QL 2 P (9) 

where Q = 1 - P .  This scheme will now be applied to the master equation 
(6). 

The evolution operator of (6) consists of four terms. We write, in 
obvious notation, 

L = W 1  +W2 -I-W3 -}-W4 (10) 

As W2 refers to the fast reaction step, a suitable choice to separate L is 

1 
-L1  =W2,  L;  = W l  +W3 +W4 (11) 
g 

However, a different choice is possible; I will go into this subject in the next 
section. 

The operator L 1 defined in (11) represents the unidirectional reaction 
Y ~ 2 X .  The combination m = n ~  +2n2 is constant during this reaction, 
which proceeds until Y is depleted (see Fig. 1). Hence the projection 
operator of this reaction is given by 

PP(nl ,  r/2)=~n2,0 2 (~m, nl+2n'2P(n'l ' Fit2) (12) 
nlnl 

n 2 

i 

I 
I 

---. . .  

Fig. 1. The reaction Y--, 2X. 
n 1 

822/57/1-2-12 
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With Fig. 1 in mind, its meaning can be easily understood. The quantity 

q(m) = ~ 6m, n'+2n'2p(n], n2) (13) 

is the total probability along the line m = n~ + 2n 2. 
According to (8) and (9), one can deduce a reduced equation for the 

projected part of the joint probability density [and hence for q(m)]. The 
details of the calculations can be found in ref. 17. To order e, the result 
reads 

(l(m) = ~aklk312- ~(E -1 - 1) m(m - 1) q(m) 

+eklkn[2 2 ( E -  1 ) m ( m -  1)(m-2)q(m)  (14) 

We conclude that q(m) obeys an equation of the master type; (14) is the 
master equation associated with the overall reaction (1). The effective 
reaction constants are gkak 3 and gklk 4 for the forward and backward 
reaction, respectively. 

Gardiner ~1~) also arrives at (14), but via a detour. He writes p as a 
superposition of multivariate uncorrelated Poissonian distributions; the 
expansion coefficients then obey (at least for bimolecular reactions) a 
Fokker-Planck-like equat!on. The elimination of the intermediate Y in his 
approach is performed at the Fokker-Planck level instead of the master 
level. However, his function px(v) in (7.7.128) is not always normalizable, 
and hence the P in (7.7.127) may not be a projection operator; this makes 
his derivation moot. 

3. N O N U N I Q U E N E S S  OF THE PROJECTION OPERATOR 

As k2 is the largest reaction constant, the separation (11) of (10) is 
suggested. However, one may alternatively include W1 in L1. So, now 
choose 

1 
- L l  = W 2  -}- g W l ,  Z 2 = W  3 -{-W 4 (15) 

Consequently, another projection operator is needed, 

(ek1s n2 
Pp(n,, n2)-  A(m) q(m) (16) 

nl!n2! 

where q(m) is again given by (13), and A(m) follows from a normalization 
condition; 

A- l (m)  = ~ •m n l+2n2  (ek1s 1)n2 (17) 
hi,n2 ' nl ! n 2 ! 
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According to our projection formalism, q(m) obeys in lowest order 

~(m) = PLz Pp(nl , n2) (18) 

where P=Z.~..2 6m,.l+z,,2" In order to find explicit results, one has to 
perform some calculations, 

k2a(eklQ l).2 
f t 2 P p =  E 6m, nl+2n2 (n  2 - -  1)[ 

hi,n2 

X ~i~. ftl! 

k4(ekl ~ 1),2 
+ ~ 6 ..... ~+2,,2 Q ( n 2 - 1 ) !  

nl,n2 

~aklk3 (E -1 - 1) A(m) 
- T A ( m - 2 )  q(m) 

eklk 4 A(m) 
+ ~ y - ( E -  1) A(m--3) q(m) (19) 

As l i m ~  o A l (m)= 1/(m!) one thus arrives at 

gl(m) =~aklk3 (E_ t _ 1) m(m - 1) q(m) 
f2 

ekl k4 
+ - - ~ -  ( E -  1) r e ( m -  1 ) ( m -  2) q(m) (20) 

which is identical to (14). 
Hence both (11) and (15) yield the same reduced master equation. 

However, this is not a general feature, but a consequence of the 
unimolecularity of the fast reaction step Y-* 2X. In the next sections it will 
be shown that, for the case of a bimolecular fast reaction, it is crucial to 
divide L in the right way. 

4. M E S O S C O P I C  T R E A T M E N T  O F  T H E  H B r  R E A C T I O N  

The formation of hydrogen bromide, H2 + Br2 ~ 2HBr, is a complex 
reaction, which is supposed to proceed according to the following reaction 
mechanism: 
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1 

Br 2 + M ~ ~ 2Br + M 
2 

3 
H 2 + Br ~ ~ HBr + H (21) 

4 

Br 2 + H 5 ~ HBr + Br 

The rate equations of this reaction have been studied in the preceding 
paper. It has been shown that, if one assumes that reaction 2 is much faster 
than the others, the intermediates Br and H can be eliminated successively. 
Here, it is our aim to perform a similar reduction at the mesoscopic level. 

Let us denote the number  of molecules of H2, Br2, HBr, H, and Br by 
r/l, r/2, n3, g/4, and ns, respectively. The master equation associated with 
(21) may then be written as 

P(nl, n2, n3, n4, n s ) = k l ( E 2 E 5 2 -  1) n2p 

+~-~(EzlE~ - 1) ns(n 5 - 1)p 

k3 +-'~ (E, EsE31E41 - 1) n,nsp 

k4 
q - ~  (E11E ~1E3E4 - 1) n3n4 p 

k5 
+-~(E2E4E31E51-1)n2n4P (22) 

The numbers nl ..... ns are not all independent, as the combinations 
2nl + n3 + n4 and 2n2 + n3 + n5 remain constant during the reaction. The 
constant k:  is assumed to be much larger than the others; k z / k  1 = l/e, 
e ,~ l .  

The evolution operator  L in (22) consists of five terms that are to be 
divided into two groups, corresponding to fast and slow motion, respec- 
tively. As in (11), the following separation is suggested: 

L1/e=W2, L 2 = W  1 -{-W 3 -Ji-W 4 -{-W 5 (23) 

However, this choice does not lead to meaningful results, as I will now 
show. 

The projection operator associated with (23) is 

P=~,,s,i(m) 2 6n,2,,~+,,; (24) 
4";  
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where i ( m ) = [ 1 - ( - 1 ) m ] / 2 .  This projection operator allows one to 
eliminate n5 and to derive a reduced equation for 

q(n,, m, n3, n4) = Z 6m, 2n2+nSp(nl' n2, El3' 174' n5) 
n2, n5 

In lowest order one finds 

k 3 
(t = -~  (E, E /1E 4' Em - i) n~ i(m)q 

k4 
+ --~ (E~ -1E3E4Em 1 - 1) n3n4q 

ks _ (m -~(E31E4Ern 1)/74 2(m))q (25) 

This equation is independent of e, and hence a secondary elimination (as 
at the macroscopic level) is not possible. Moreover, (25) does not refer to 
a chemical reaction, a n d  one cannot deduce a meaningful rate equation 
from it. 

5. M A C R O S C O P I C  A N D  M E S O S C O P I C  T I M E  S C A L E S  

At the macroscopic level the kinetics of a chemical reaction is 
described by a master equation. The time scales that are associated with it 
(mesoscopic time scales) differ from the time scales at the macroscopic 
level. The macroscopic time scales are only determined by the reaction 
constants of the individual reaction steps; they are independent of f2. 
Mesoscopic time scales, on the other hand, do depend on the size of the 
system. 

Consider, e.g., reaction 1 of (21). According to (22), the time 
derivative of the probability distribution is proportional to n 2. As n2 ranges 
from microscopic values of order 1 to macroscopic values of order f~, the 
mesoscopic time scales range from (k,s -1 to k l  1. Hence for the 
unimolecular reaction 1 there are no mesoscopic time scales that are slower 
than the corresponding macroscopic time scales. 

This is no longer true for bimolecular reactions. As one may infer from 
(22), ~:he mesoscopic time scales of reaction 2 range from (k20)  I to f2k 21. 
Hence the bimolecular reaction 2 contains mesoscopic time scales that are 
slower than the corresponding macroscopic time scale. This is why (24) is 
not a good projection operator; (24) implies that all Br molecules (possibly 
with the expection of one) are depleted. This process proceeds on a slow 
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mesoscopic time scale of order e~. As (24) also eliminates this slow 
mesoscopic time scale, one runs into difficulties. In the next section a 
projection operator will be defined that is free of this complication. 

6. P R I M A R Y  E L I M I N A T I O N  

As one may infer from (22), reaction 2 of (21) becomes very slow for 
small values of ns. Reaction 1 keeps ns from becoming too small; hence, it 
is appropriate to include it among the fast terms. So now put 

L1/e = Wj + W2, L2 = W 3 -~- W 4 -~ W 5 (26) 

The associated projection operator is given by 

- (e~?)ns/2 A(h)  ~ 6h, n2+n;/2 (27) 
n z ! n s !  , �9 n2,n 5 

The function A(h)  is determined by a normalization condition, 

A l (h )=  ~ •h, ni+n5/2 (28) 
re,n5 n2 ! n5 ! 

A - l ( h )  can be expressed in terms of Kummer functions. See ref. 17. 
With the help of the projection operator (27), one can effectively 

eliminate the variable n 5 and derive a reduced equation for the quantity q, 

q(nl, h,  r /3 ,174)  = 2 6h, n'2+n;/2p(nl' n ~ ,  173,174, r / ; )  (29) 
n2,n 5 

The role of 172 is taken over by the half-integer h. In lowest order one finds 

1 ~ = / ; 1 / 2 ~  1/2/i (IC," ~7 '1 /2~7 ' -1E41  
t'~ 3 ~a-, 1 a-~ h a-~ 3 

A(h)  
1)nl 

~ ( h  - 1 /2 )  

+ .('2 1 k 4 ( E I 1 E ~  I/2E3E 4 - 1) n3n4q 

A(h) 
A(h - 1 ) 

+ (2 -1ks (E1 /2E31E4  _ 1)n 4 - -  q (3o) 

where E J 2 f ( h ) =  f ( h  + 1/2). 
One of the terms in (30) is of order x/-7-. This is a consequence of the 

e dependence of the projection operator (27). The first-order correction to 
(30) is given by [see (9)] - - e ~ L 2 ~ L ~ - I ~ L 2 ~ p .  This term is of order 8, 
as L1  ~ does not introduce negative powers of 8. See ref. 17. 
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The result (30) may be interpreted in terms of a virtual reaction. As 
~.~ t. (17) m A(h+ 1/2)/A(h)-x/-s for large n, one ay associate the following 

reactions with (30): 

X 1 "q- ~ X h  .r X 3 - ] - X  4 

X 4 -~ X h ~ X 3 + �89 h 
(31) 

Hence on a slower time scale the complex reaction (21), which consists of 
five steps, may be viewed as a virtual reaction that proceeds through three 
steps. 

Equation (30) is the result of the elimination of the intermediate Br. 
As one of the effective reaction constants of the virtual reactions in (30) is 
much smaller than the other two, a second elimination (as at the macro- 
scopic level) is possible. In the next section the elimination of H will be 
performed. 

7. S E C O N D A R Y  E L I M I N A T I O N  

Equation (30) is of the form 

(32) 

W4 and Vr are faster t h a n  V~]3; one should therefore look for a projection 
operator that obeys ~(W4 + Ws) = (W4 + W s ) ~  = 0. 

First note that q depends only on two variables, as 2 h + n  3 and 
2n~ + n 3 + n 4 remain constant during the reaction (31). If one chooses n3 
and n 4 as the independent variables, one can write (30) in the simplified 
form 

g]=el/2(2 a /2k3(E31E4J  1)nl  A(h) - q 

A(h - 1/2) 

q- .(2 - l k 4 ( E 3 E  4 - 1 ) n3rl4q 

+(2 lks(E31E4- 1)n4 - -  
A(h) 

A(h-1) q (33) 

m 1 It is understood that 2nl = C1 - n  3 - n 4  and h =  C2 5n3. 
Consider an operator K with 

Kq = E K(r/3, n4 r n'~, n'4) q(n'3, n'4) 
,;,,'4 

(34) 
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If one requires K ( ~ ( 4  -t- V(5) = 0, it is found that  K must  obey the equat ion  

k4n;n ; [K(n3 ,  n41n; - 1, n~ - 1 ) - K ( n 3 ,  n41n; ,n ; ) ]  

= k s n  ~ - -  
A(h ' )  

A(h'- 1) 
[K(n3, n41n; + 1, n~ - 1 ) - K ( n 3 ,  n4 ln ; ,n~)  ] (35) 

Or  al ternatively 

K ( n 3 , n a l n ; , n ; ) =  
k4n' 3 

K(n3, n41n' 3 - 1, n'4 - 1) 
kan'3 + k s A ( h ' ) / A ( h ' -  1) 

+ 
k s A ( h ' ) / A ( h ' -  1) 

k4n; + k s A ( h ' ) / A ( h '  - 1) 
K(n3,  n 4 In; + 1, n'4 - 1) 

(36) 

This equa t ion  m a y  be interpreted in terms of a branching process. (3) 
K(n3, n41n'3, n'4) is the probabi l i ty  that  if one starts in the point  n; ,  n~, one 
ends up in n 3, n 4 after n] - n  4 steps (see Fig. 2). Here  

re+ = k s A ( h ' ) A ( h ' -  l )  l [k4n'3 + k s A ( h ' ) A ( h ' -  l )  ~]-1 

is the probabi l i ty  to make  a transi t ion (n; ,  n~,) ---, (n; + 1, n~, - 1 ), and 

rc _ = k4n'3[kan' 3 + k s A ( h '  ) A(h '  - 1 ) - 1 ]  -1 

is the probabi l i ty  to go f rom (n; ,  n;)  to (n; - 1, n~, - 1). 

(2 

b c 

Fig. 2. Branching process. 

n 3 
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As projection operator choose 

= 6,,4,0 ~ K(n3, n4 = 0In'3, n;) (37) 

With this ~ the condition ~(W4 + VCs) is also satisfied. 
It is unnecessary to solve the branching process (36) in all detail 

(although it is possible). The only quantities that are needed are 

Ko = K(n3, n4 = 0In; ,  n~ = 0) = 6n3,n; (38) 

and 

K l = K ( n 3 , n 4 = O ] n ; , n ; = l ) = T z  6.3,.' 3 1 + ~ +  6n3,n'3+X (39) 

With the help of the projection operator (37) one may obtain a 
reduced equation for the quantity r =Kq. The calculation is straight- 
forward. The lowest is KW 3 ~ q  [cf. (9)], 

K~Zf3~q= ~ K(n3, n 4 = 0 I n ; ,  n'a)(n'l + 1) 
n'3,.'4 

A(h' + 1/2) 
x A(h') (5n4,1 q(n'3 - 1) 

A(h') 
- ~ K(n3, n4 = O tn'3, n4)n'l A(~7--]-/2) 6.4,0 q(n3) (40) 

-'3,-4 

With the help of (38) and (39) one easily finds 

A ( h +  1) 
KVr ~ q=e~/2(2-1/Zk3ks(nl + 1) 

A(h + 1/2) 

[ k4 n 3 - 1  ] r ( n 3 - 2 )  
• 1 + k5 A(h + 175)  h- 1/2t 

A(h) 
- al/2f21/Zk3ksnl A(h - 1/2) 

=[ k4 1/2)/A(hn3----+ 1 _ 3/2)11 x 1 + k 5 A ( h -  r(n3) (41) 

Hence for the reduced equation one obtains 

#(nl, n3, h) = el/2~'2-1/2k3(ElEhE3 2 -  1)nt 

A(h) [ k 4 ( n 3 + l ) A ( h - 3 / 2 ) l  1 
x A(h - 1/2) 1 + k5 A(ff-~-- ]-/~ r (42) 

This equation may be interpreted as the effective master equation of the 
overall reaction H2 + Br2 ~ 2HBr. 
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8. Q - E X P A N S I O N  

Equation (42) describes the reaction H 2 + B r  2--*2HBr at the 
mesoscopic level. An approximate solution of this equation can be found 
by the s (3) Put n3=O(b3+f21/2~, nl=f20~ -!0~/2~ and 2 ~ ~ 
expand the step operator, 

(E~E2E32- 1)= -2s ~/2 + 2 0  7-~5~_2+ ' (43) u ~  

If one furthermore uses the asymptotic behavior of the function A(h), (17) 
the order-f21/2 terms yield 

( 1 (441 ~b=2el/2k3010{/2 l + ksqJ2j 

This equation is equivalent to the reduced equation that was obtained 
at the macroscopic level. This shows that our elimination scheme is 
consistent. 

The order-f2 ~ terms yield a Fokker-Planck equation for the proba- 
bility density H(~), 

OH- ~ + 2q~2) ~ ~H 

(2k4 - ks) ~1 ~ 3 / 2  

-t- g1/2k3k5 ~4~3 +k5r ~.  ~H 

,~3/2 c~2 
~b1~2 /7 (45) + 2e'/2k3k5 (k4q~ 3 -l- ks~bz) 2 0~ 2 

This Fokker-Planck equation is linear, and hence its solution is a 
Gaussian. (3) For the fluctuations in the number of HBr molecules, (45) 
yields 

& ((~2))= _e1/2k3k5 ~b~2/2(3~bl +2~b2) 

+ 4~U2k3k5 01~3/2 
(k4~3 +k542) 2 

2(2k4 - ks) r r ] 
q_ (k4q~3 -+-k5)r 2 ~ 2 ) )  

(46) 

This result could also have been obtained by first performing the 
Q-expansion of the original master equation (22) and subsequently 
eliminating the intermediates Br and H and their fluctuations. 
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